
BTEC Level 3 National Foundation Diploma in Sport

Unit 1: Anatomy and Physiology

SPECIFICATION & GLOSSARY OF KEY TERMS

LEVEL 3 SPORT - ANATOMY & PHYSIOLOGY. Self-checking chart in preparation for the exam.

Торіс	In class	Revision	Practice questions
	notes	notes made	attempted
The skeletal system - Understand how the bones of the skeleton are used in spo	rting technique	es and actions.	
Major bones to include cranium, clavicle, ribs, sternum, scapula, humerus, radius,			
ulna, carpals, metacarpals, phalanges, pelvis, vertebral column (cervical, thoracic,			
lumbar, sacrum, coccyx), femur, patella, tibia, fibula, tarsals, metatarsals.			
Type of bone - long, short, flat, sesamoid, irregular.			
Areas of the skeleton to include axial skeleton, appendicular skeleton, spine, curves			
of the spine, neutral spine alignment, postural deviations (kyphosis, scoliosis).			
Process of bone growth - osteoblasts, osteoclasts, epiphyseal plate.			
Functions of the skeleton: supporting framework, protection, attachment for			
skeletal muscle, source of blood cell production, store of minerals, leverage, weight			
bearing & reduce friction across a joint.			
Main functions of different bone types when performing sporting techniques and			
actions: long bones - provides leverage, red blood cell production / short bones -			
weight bearing / flat bones - protection / sesamoid bones - reduce friction across a			
joint.			
Joints & movements- Understand how joints of the upper & lower skeleton are us	ed in sporting	techniques an	d actions.
Joints of the upper skeleton (shoulder, elbow, wrist, cervical and thoracic			
vertebrae).			
Joints of the lower skeleton (hip, knee, ankle, lumbar, sacrum, coccygeal vertebrae).			
Classification of joints - fibrous (fixed), cartilaginous (slightly moveable), synovial			
(freely moveable).			
Types of synovial joints (ball and socket, condyloid, gliding, saddle, hinge, pivot).			
The bones forming the following joints (shoulder, elbow, wrist, hip, knee, ankle,			
and their use in sporting techniques and actions).			
Structure and function of components of synovial joints and their use in sporting			
techniques and actions (joint capsule, bursa, articular cartilage, synovial membrane,			
synovial fluid, ligaments).			

The impact of adaptation (lang topm) of the system on avancies and ensute	
The impact of adaptation (long term) of the system on exercise and sports	
performance; Hypertrophy, Increased tendon strength, Increase in myoglobin	
stores, Increase in number and size of mitochondria, Increase in storage of	
glycogen, Increase in storage of fat, Increased tolerance to lactate.	
Understand additional factors affecting the muscular system and their impact on	
exercise and sports performance.	
 Age - effect of the aging process on loss of muscle mass. 	
 Cramp - involuntary sustained skeletal muscle contraction. 	
The effects of exercise and sports performance on the respiratory system	
Structure of the respiratory system	
 nasal cavity, epiglottis, pharynx, larynx, trachea, bronchus, bronchioles, lungs, 	
alveoli, diaphragm, thoracic cavity, Intercostal muscles (external and internal).	
Understand the function of the respiratory system in response to exercise and	
sports performance; Mechanisms of breathing (inspiration and expiration) at rest	
and during exercise / Gaseous exchange.	
Understand the lung volumes and the changes that occur in response to exercise	
and sports performance; Tidal volume / Vital capacity / Residual volume / Total lung	
volume / Minute ventilation (VE).	
Understand how breathing rate is controlled in response to exercise and sports	
performance; Neural (medulla oblongata as the respiratory centre in the brain).	
 Chemical (chemoreceptors detect change in blood carbon dioxide concentrations 	
and changes in pH).	
Responses of the respiratory system to a single sport or exercise session	
Increase in breathing rate & Increased tidal volume.	
The impact of adaptation of the system on exercise and sports performance.	
Increased vital capacity, Increased strength of the respiratory muscles and	
Increase in oxygen and carbon dioxide diffusion rate.	
Understand additional factors affecting the respiratory system and their impact	
on exercise and sports performance.	
Asthma & Effects of altitude/partial pressure on the respiratory system.	

The effects of sport and exercise performance on the cardiovascular system	
Structure of the cardiovascular system -	
atria, ventricles, bicuspid valve, tricuspid valve, semi-lunar valves, septum, major	
blood vessels (aorta, vena cava, pulmonary artery, pulmonary vein), coronary arteries.	
Structure of blood vessels - arteries, arterioles, veins, venules, capillaries.	
Composition of blood - red blood cells, plasma, white blood cells, platelets.	
Understand the function of the cardiovascular system in response to exercise	
and sports performance; Delivery of oxygen and nutrients, Removal of waste	
products – carbon dioxide and lactate, Thermoregulation – vasoconstriction,	
vasodilation of blood vessels, Fight infection, Clot blood.	
Understand the control of the cardiac cycle and how it changes during exercise	
and sports performance; Sinoatrial node (SAN) / Atrioventricular node (AVN) /	
Bundle of His / Purkinje fibres / the sympathetic & parasympathetic nervous system.	
Responses of the cardiovascular system to a single sport or exercise session	
• Anticipatory increase in heart rate prior to exercise. • Increased heart rate.	
• Increased cardiac output. • Increased blood pressure. • Redirection of blood flow.	
The impact of adaptation of the system on exercise and sports performance.	
 Cardiac hypertrophy / Increase in resting and exercising stroke volume / 	
Decrease in resting heart rate / Capillarisation of skeletal muscle and alveoli /	
Reduction in resting blood pressure / Decreased heart rate recovery time /	
Increase in blood volume.	
Understand additional factors affecting the cardiovascular system and their	
impact on exercise and sports performance;	
Sudden arrhythmic death syndrome (SADS),	
High blood pressure/low blood pressure & Hyperthermia/hypothermia.	
The effects of exercise and sports performance on the energy systems	
Understand the role of adenosine triphosphate (ATP) for muscle contraction for	
exercise and sports performance; Immediately accessible form of energy for	
exercise, Breakdown and resynthesis of ATP for muscle contraction.	

Understand the role of the ATP-PC system in energy production for exercise	
and sports performance; Anaerobic / Chemical source (phosphate and creatine),	
Resynthesis of ATP, Recovery time, Contribution to energy for exercise and sports	
performance (duration and intensity of exercise).	
Understand the role of the lactate system in energy production for exercise and	
sports performance; Anaerobic, Process of anaerobic glycolysis (glucose converted	
to lactic acid), Recovery time, Contribution to energy - duration and intensity	
Understand the role of the aerobic energy system in energy production for	
exercise and sports performance; Aerobic site of reaction (mitochondria), Food	
fuel source, aerobic glycolysis, Krebs cycle, electron transport chain, Recovery time,	
Contribution to energy - duration and intensity of exercise).	
The impact of adaptation of the systems on exercise and sports performance.	
 ATP-PC - Increased creatine stores. 	
 Lactate system - Increase tolerance to lactate. 	
 Aerobic energy system - Increased use of fats as an energy source, Increased 	
storage of glycogen & Increased numbers of mitochondria.	
Understand additional factors affecting the energy systems and their impact on	
exercise and sports performance;	
Diabetes (hypoglycaemic attack)	
Children's lack of lactate system.	

Look for past papers & mark schemes –

https://qualifications.pearson.com/en/support/support-topics/exams/past-papers.html?Qualification-Family=BTEC-Nationals&Qualification-Subject=Sport%20(2016)&Status=Pearson-UK:Status%2FLive&Specification-Code=Pearson-UK:Specification-Code%2Fnat16-sport Key Word Glossary: write definition / memory tool to help use key words in the exam -

Bone names			
cranium		pelvis	
clavicle		cervical vertebrae	
ribs		thoracic vertebrae	
sternum		lumbar vertebrae	
scapula		sacrum	
humerus		соссух	
radius		femur	
ulna		patella	
carpals		tibia	
metacarpals		fibula	
phalanges		tarsals	
		metatarsals.	
Types of Bone			
Long Bone		Flat Bone	
Short Bone		Irregular Bone	
		Sesamoid Bone	
Areas of the skeleton			
axial skeleton		postural deviations	
appendicular skeleto	n	kyphosis,	
Epiphyseal plate		scoliosis	

Bone Growth			
Osteoblasts		Osteoclasts	
Classification of joints			
Fibrous joint		Ball & Socket	
Cartilaginous joint		Hinge	
Synovial joint		Condyloid	
Gliding		Saddle	
		Pivot	
Synovial Joints			
joint capsule		bursa	
articular cartilage		synovial fluid	
Synovial membrane		ligaments	
Joint Movements			
flexion		extension	
plantarflexion		dorsiflexion	
lateral flexion		hyperextension	
horizontal flexion		horizontal extension	
abduction		adduction	
horizontal abduction		horizontal adduction	
rotation		circumduction	

Muscular system			
Cardiac Muscle		Agonist	
Smooth Muscle		Antagonist	
Skeletal Muscle		Synergist	
Type 1 (Slow)		Fixtator	
Type 11a (FOG)		Concentric	
Type 11x (FTG)		Eccentric	
All or none law		Isometric.	
Hypertrophy		Tendon	
Glycogen		Myoglobin	
Lactate		Mitochondria	
Microtears		Pliability	
Cramp		DOMS	
Respiratory system			
nasal cavity		pharynx,	
larynx		epiglottis	
trachea		bronchus	
bronchioles		lungs	
alveoli		diaphragm	
thoracic cavity,		external intercostal	
internal intercostal		Gaseous exchange	
inspiration		expiration	

Tidal volume	Vi	ital capacity
Residual volume	Тс	otal lung volume
Minute ventilation	m	nedulla oblongata
Chemoreceptors	As	sthma
Altitude	Pa	artial pressure
Cardiovascular system	n	
atria,	Ve	entricles,
tricuspid valve	bi	icuspid valve
semi-lunar valves	se	eptum
aorta	νε	ena cava,
pulmonary artery	ρι	ulmonary vein
coronary arteries	ar	rteries
arterioles,	νε	eins
venules	са	apillaries.
red blood cells	pl	lasma
white blood cells	pl	latelets
vasoconstriction	va	asodilation
Thermoregulation	CI	lotting
sympathetic	pa	arasympathetic
nervous system.	ne ne	ervous system.

Sinoatrial node	AV node
Bundle of His	Purkinje fibres
Anticipatory rise	Heart rate
Stroke Volume	Blood pressure
Cardiac Output	Vascular shunt
Cardiac	Sudden Arrhythmic
hypertrophy	Death Syndrome
Capillarisation	High blood pressure
Hyperthermia	Hypothermia
Energy systems	
АТР	Phosphocreatine PC
Resynthesis	Anaerobic
Duration	Intensity
Glycolysis	Glucose
Pyruvic Acid	Glycogen
Aerobic glycolysis	Lactic Acid
Krebs Cycle	Mitochondria
Recovery time	Electron transport Chain
hypoglycaemic	Diabetes